EconPapers    
Economics at your fingertips  
 

Use of partial load operating conditions for latent thermal energy storage management

Jaume Gasia, Alvaro de Gracia, Gerard Peiró, Simone Arena, Giorgio Cau and Luisa F. Cabeza

Applied Energy, 2018, vol. 216, issue C, 234-242

Abstract: A proper management of thermal energy storage (TES) charging and discharging processes allows the final users to optimize the performance of TES systems. In this paper, an experimental research is carried out to study how the percentage of charge in a latent heat TES system (partial load operating conditions) influences the discharge process. Several charging and discharging processes were performed at a constant heat transfer fluid (HTF) mass flow rate of 0.5 kg/s and temperature of 155 °C and 105 °C, respectively. High density polyethylene (HDPE) with a total mass of 99.5 kg was used as phase change material (PCM) in a 0.154 m3 storage tank based on the shell-and-tube heat exchanger concept. Five different percentages of charge have been studied: 58 %, 73 %, 83 %, 92 %, and 97 % (baseline test). Results showed that by modifying the percentage of charge, the time required for the charging process was reduced between 97.2% and 68.8% in comparison to the baseline case. However, the energy accumulated was only reduced a maximum of 35.1% and a minimum of 5.2%, while the heat transfer rates during the first 60 min of discharge were reduced a maximum of 45.8% and a minimum of 6%. Therefore, partially charging the TES system not lower than 85% of its maximum energy capacity becomes a good option if the final application accepts a maximum decrease of discharging heat transfer rates of 10% if compared to the fully charged system.

Keywords: Thermal energy storage; Latent heat; Phase change material; Partial load; Thermal management (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918301879
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:216:y:2018:i:c:p:234-242

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.02.061

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2024-12-28
Handle: RePEc:eee:appene:v:216:y:2018:i:c:p:234-242