Higher power generation from torsion-dominant mode in a zigzag shaped two-dimensional energy harvester
Hyeon Lee,
Nathan Sharpes,
Hichem Abdelmoula,
Abdessattar Abdelkefi and
Shashank Priya
Applied Energy, 2018, vol. 216, issue C, 494-503
Abstract:
Torsion- and bending-dominant modes of a zigzag-shaped piezoelectric vibrational energy harvester were compared in terms of power generation using experimental and numerical methods. Output power measurements from 25 discrete mass loading configurations led to three major observations: (1) a torsion-dominant mode can produce a higher level of power compared to a bending-dominant mode, (2) generated power in the torsion-dominant mode displays a V-shape curve under certain mass loading, rather than continually increasing as a function of mass, and (3) generated power in the bending-dominant mode is largely independent of mass. These observations differ from the conventional wisdom that bending modes are better for energy harvesting and that power increases as a function of added mass. Numerical analysis is used to validate the variation of generated power and is found to be in agreement with the experimental results. Analysis of the displacement and gradation angle of equi-displacement measurements of the beam are used to provide understanding of the influence of dynamics of the energy harvester on power generation.
Keywords: Energy harvesting; Vibration energy; Zigzag structure; Two-dimensional beam; Torsion mode; Bending mode; Power; Mass loading (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918302083
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:216:y:2018:i:c:p:494-503
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.02.083
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().