Cold- and warm-temperature emissions assessment of n-butanol blends in a Euro 6 vehicle
Magín Lapuerta,
Ángel Ramos,
Javier Barba and
David Fernández-Rodríguez
Applied Energy, 2018, vol. 218, issue C, 173-183
Abstract:
Alcohols produced from waste or lignocellulosic materials with advanced production techniques constitute a sustainable alternative as diesel fuel component. With respect to ethanol, the higher heating value of n-butanol together with its better miscibility with diesel fuel and lower hydrophilic character suggest that butanol is a better option as blending component for diesel fuels. A Euro 6 Nissan Qashqai 1.5 dCi light-duty vehicle was tested following the NEDC (New European Driving Cycle) on a chassis dynamometer located in a climatic chamber with different blends of diesel and n-butanol. Room temperatures were set at 24 °C and −7 °C. Butanol blends up to 16% (volume basis) showed benefits in particle number and particulate matter emissions upstream of the DPF at any ambient condition, this implying a reduction in the frequency of regeneration. Benefits in engine efficiency were observed at cold ambient temperature (−7 °C), just when the efficiency is poorest. Increases in NOx emissions were observed only at cold ambient temperature (−7 °C), while increases in CO and hydrocarbon emissions were found at any temperature. Blends with n-butanol content above 13% led to startability problems at cold ambient conditions. In general, including n-butanol as a blend component is beneficial for both performance and particulate emissions, but the blend concentration is limited by startability problems at very low ambient temperature.
Keywords: Diesel vehicle; n-Butanol; Particle emissions; NOX emissions; Aftertreatment; Startability (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191830312X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:218:y:2018:i:c:p:173-183
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.02.178
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().