Effects of solvent participation and controlled product separation on biomass liquefaction: A case study of sewage sludge
Hermawan Prajitno,
Jongkeun Park,
Changkook Ryu,
Ho Young Park,
Hyun Soo Lim and
Jaehoon Kim
Applied Energy, 2018, vol. 218, issue C, 402-416
Abstract:
In this study, the effects of product separation on the distribution of liquid products and the energy efficiency of sewage sludge liquefaction in supercritical alcohol and supercritical alcohol–water mixtures were investigated. While considering alcohol participation in the liquefaction reaction (6–47 wt%), the effects of process parameters such as temperature (300–400 °C), residence time (10–120 min), concentration (9.1–25.0 wt%), and type of supercritical fluid (water, methanol, ethanol, water–alcohol mixture) on the yield and properties of bio-oils were examined. Accounting for alcohol participation and product separation allowed the bio-oil yield, energy recovery, and energy efficiency to be newly defined. Application of the new separation protocol developed in this study realized a 10–25 wt% increase in bio-oil yield because light fractions were efficiently captured. When supercritical methanol was used, the light fractions consisted primarily of methylated short-chain esters, whereas ketones and alcohols were the major species when supercritical ethanol was used. Liquefaction at 400 °C and 20 wt% sewage sludge in a mixture of water–methanol (80:20, v/v) resulted in a bio-oil with a high calorific value (35.8 MJ kg−1), achieving 155% energy recovery and 106% energy efficiency. Computational fluid dynamics (CFD) analysis of bio-oil combustion conducted in a commercial boiler demonstrated that cofiring with a mixture of petroleum heavy oil and bio-oil resulted in a high firing temperature of 1570 °C and a heat transfer rate, which were comparable to that obtained from conventional heavy oil firing.
Keywords: Sewage sludge; Liquefaction; Bio-oil; Supercritical fluids; Separation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918303374
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:218:y:2018:i:c:p:402-416
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.03.008
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().