Machine learning-based thermal response time ahead energy demand prediction for building heating systems
Yabin Guo,
Jiangyu Wang,
Huanxin Chen,
Guannan Li,
Jiangyan Liu,
Chengliang Xu,
Ronggeng Huang and
Yao Huang
Applied Energy, 2018, vol. 221, issue C, 16-27
Abstract:
Energy demand prediction of building heating is conducive to optimal control, fault detection and diagnosis and building intelligentization. In this study, energy demand prediction models are developed through machine learning methods, including extreme learning machine, multiple linear regression, support vector regression and backpropagation neural network. Seven different meteorological parameters, operating parameters, time and indoor temperature parameters are used as feature variables of the model. Correlation analysis method is utilized to optimize the feature sets. Moreover, this paper proposes a strategy for obtaining the thermal response time of building, which is used as the time ahead of prediction models. The prediction performances of extreme learning machine models with various hidden layer nodes are analyzed and contrasted. Actual data of building heating using a ground source heat pump system are collected and used to test the performances of the models. Results show that the thermal response time of the building is approximately 40 min. Four feature sets are obtained, and the performances of the models with feature set 4 are better. For different machine learning methods, the performances of extreme learning machine models are better than others. In addition, the optimal number of hidden layer nodes is 11 for the extreme learning machine model with feature set 4.
Keywords: Energy demand prediction; Building heating system; Machine learning; Thermal response time; Extreme learning machine (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (53)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191830463X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:221:y:2018:i:c:p:16-27
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.03.125
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().