Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system
Gerald Englmair,
Christoph Moser,
Simon Furbo,
Mark Dannemand and
Jianhua Fan
Applied Energy, 2018, vol. 221, issue C, 522-534
Abstract:
A solar heating system with 22.4 m2 of solar collectors, a heat storage prototype consisting of four 200 kg phase-change material (PCM) storage units, and a 735 L water tank was designed to improve solar heat supply in single-family houses. The PCM storage utilized stable supercooling of sodium acetate trihydrate composites to conserve the latent heat of fusion for long-term heat storage. A control strategy directed heat from a solar collector array to either the PCM storage or a water buffer storage. Several PCM units had to be charged in parallel when the solar collector output peaked at 16 kW. A single unit was charged with 27.4 kWh of heat within four hours on a sunny day, and the PCM temperature increased from 20 °C to 80 °C. The sensible heat from a single PCM unit was transferred to the water tank starting with about 32 kW of thermal power after it had fully melted at 80 °C. A mechanical seed crystal injection device was used to initialize the crystallisation of the sodium acetate trihydrate after it had supercooled to room temperature. The unit discharge during solidification peaked at 8 kW. Reliable supercooling was achieved in three of the four units. About 80% of latent heat of fusion was transferred from PCM units after solidification of supercooled sodium acetate trihydrate to the water tank within 5 h. Functionality tests with practical operation conditions on the novel, modular heat-storage configuration showed its applicability for domestic hot water supply and space heating.
Keywords: Solar heating system; Heat storage prototype; Phase change material; Sodium acetate trihydrate; Stable supercooling (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918304628
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:221:y:2018:i:c:p:522-534
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.03.124
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().