EconPapers    
Economics at your fingertips  
 

Magnetically recyclable acidic polymeric ionic liquids decorated with hydrophobic regulators as highly efficient and stable catalysts for biodiesel production

Heng Zhang, Hu Li, Hu Pan, Anping Wang, Sadra Souzanchi, Xu, Chunbao (Charles) and Song Yang

Applied Energy, 2018, vol. 223, issue C, 416-429

Abstract: Biodiesel, typically produced from non-food crops with heterogeneous catalysts, deems to be a promising and sustainable alternative biofuel to petroleum-derived fuels. In this study, to improve biodiesel production process efficiency by acids, biodiesel production were successfully developed using a series of magnetically acidic poly(ionic liquid) catalysts with varying hydrophobicity and controllable acidity. The detailed characterization results demonstrated that the FnmS-PIL (1a, C8) core-shell structure catalyst had large Bruner Emmett and Teller (BET) surface area (128.1 m2/g), uniform mesoporous structure (4.2 nm), strong magnetism (12.4 emu/g), a high number of acid sites (2.14 mmol/g), strong acid strength (strong electron-withdrawing anion CF3SO3− effect, −8.2 < H0 < −5.6) and strong hydrophobicity (water contact angle, 115.4°). For the biodiesel production, high biodiesel yields could be achieved by the esterification of oleic acid (by response surface methodology, RSM) and (trans)esterification of crude Euphorbia lathyris L. oils with an acid value of 24.59 mg KOH/g (by single factor optimization). Furthermore, a relative kinetic study was conducted wherein the activation energy was calculated as 39.2 kJ/mol and a pseudo-first-order model was determined for esterification. More importantly, the FnmS-PIL (1a, C8) catalyst was separated simply using a magnet and exhibited constant activity with biodiesel yield of 87.5% after five cycles in (trans)esterification. In addition, the biodiesel yield was maintained above 90% even with a water content of 6 wt% with respect to crude Euphorbia lathyris L. oils, and the fuel properties of Euphorbia lathyris L. biodiesel were found to satisfy the EN 14212 and ASTM D6751 standards, highlighting its potential in industrial biodiesel production as derived from crude non-food oil resources.

Keywords: Biodiesel; (Trans)esterification; Hydrophobicity; Magnetically acidic polymeric ionic liquids; Kinetic study (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918306196
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:223:y:2018:i:c:p:416-429

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.04.061

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:223:y:2018:i:c:p:416-429