EconPapers    
Economics at your fingertips  
 

Wind barriers optimization for minimizing collector mirror soiling in a parabolic trough collector plant

M.A. Moghimi and G. Ahmadi

Applied Energy, 2018, vol. 225, issue C, 413-423

Abstract: Wind barriers, according to their sizes and shapes, can effectively control, shift and even modify the airflow field in their downstream. These structures can accelerate the wind flow over the mirror field and move the airborne particles away from the mirrors. For example, in concentrated solar power plants it is highly desirable to engineer the system in a way that fewer particles are deposited within the solar field, in particular, onto mirror surfaces. Therefore, design optimization of dust barriers could significantly impact the mirror soiling and favourably reduce the cleaning water consumption of a solar power plant. This study focuses on the optimization of a solid wind barrier around a parabolic trough collector plant for their protection against dust soiling. The presented simulation results show that an optimum solid wind barrier is able to direct large amount of particles (in this study, more than 86%) to pass over the solar field with very small fraction (around 0.8%) being deposited on the mirrors. In addition, it was found that the barrier wall is more effective in deflecting the larger particles from the solar field.

Keywords: Wind barrier; Mirror soiling; Computational fluid dynamics; Optimization; Parabolic trough collector; Atmospheric boundary layer; Particle deposition; Turbulent; Discrete phase method (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918307207
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:225:y:2018:i:c:p:413-423

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.05.027

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:225:y:2018:i:c:p:413-423