A near-isothermal expander for isothermal compressed air energy storage system
Xinjing Zhang,
Yujie Xu,
Xuezhi Zhou,
Yi Zhang,
Wen Li,
Zhitao Zuo,
Huan Guo,
Ye Huang and
Haisheng Chen
Applied Energy, 2018, vol. 225, issue C, 955-964
Abstract:
Compressed air energy storage technology is considered as a promising method to improve the reliability and efficiency of the electricity transmission and distribution, especially with high penetration of renewable energy. Being a vital component, the expander takes an important role in compressed air energy storage operation. The specific work of an expander can be improved through an isothermal expansion compared with the adiabatic expansion process due to a nearly constant temperature which enables the expander to operate with a high pressure ratio. In this study, a specific reciprocating expander with a high pressure ratio was developed and its adiabatic expansion characteristics were measured. Numerical modelling was performed to simulate adiabatic expansion. This model was also validated by experimental results. Based on these findings, we propose a quasi-isothermal expansion process using water injection into the expander cylinder. Modelling was also extended to simulate the quasi-isothermal process by introducing water–air direct heat transfer equations. Simulation results showed that when spraying tiny water droplets into the cylinder, the specific work generated was improved by 15.7% compared with that of the adiabatic expansion under the same air mass flowrate, whilst the temperature difference was only about 10% of that of the adiabatic process, and cylinder height was decreased by 8.7%. The influence of water/air mass flowrate ratio and the inlet temperature on the expander performance was also studied.
Keywords: Compressed air energy storage; Isothermal expander; Experiment and simulation; Specific work; High pressure ratio (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918306135
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:225:y:2018:i:c:p:955-964
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.04.055
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().