Development of robust suboptimal real-time power sharing strategy for modern fuel cell based hybrid tramways considering operational uncertainties and performance degradation
Fei Peng,
Yuanzhe Zhao,
Ting Chen,
Xuexia Zhang,
Weirong Chen,
Donghua Zhou and
Qi Li
Applied Energy, 2018, vol. 226, issue C, 503-521
Abstract:
The powertrain system of modern PEMFC based hybrid tramways typically contains a PEMFC system and a hybrid energy storage subsystem when combing a lithium-ion battery (LIB) modules with a supercapacitor (SC) bank. Based on the detailed analysis of stochastic uncertainties in tramway operation, a suboptimal real-time power sharing strategy considering operation uncertainties as well as fuel economy and system durability is proposed in this paper. The proposed energy management strategy consists of three modules, namely the fundamental real-time penalty power sharing module, the fuzzy-logic based differential power compensation module, and the Rainflow-based predictive SOC balancing module. Firstly, suboptimal real-time power sharing among different energy sources is achieved in the fundamental real-time penalty power sharing module. Secondly, a fuzzy-logic based differential power compensation module is designed to achieve the performance degradation balancing between PEMFCs and LIBs. Furthermore, a Rainflow-based predictive SOC balancing module is developed to realize adaptive updating concerning key parameters of the above two modules based on historical SOC information identification of SC subsystem and enhance the robustness to stochastic uncertainties. Detailed simulation results demonstrate that the proposed energy management strategy can guarantee operation stabilization of PEMFC based hybrid topologies throughout the simulated driving cycle. The influence of the proposed energy management strategy on the service life of the PEMFC subsystem and fuel economy of hybrid tramway is discussed in detail. Finally, the proposed energy management strategy with optimized PEMFC and HESS both decoupled topology is verified to be more suitable for PEMFC-based hybrid tramway applications with minimum equivalent hydrogen consumption and performance degradation balancing among hybrid energy sources, compared with other reductant hybrid configuration-based energy management strategies.
Keywords: PEMFC-based hybrid tramways; Energy management strategy; Operational uncertainties; Performance degradation; SOC balancing (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918308092
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:226:y:2018:i:c:p:503-521
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.05.092
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().