Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system
Shunmin Zhu,
Guoyao Yu,
Jongmin O,
Tao Xu,
Zhanghua Wu,
Wei Dai and
Ercang Luo
Applied Energy, 2018, vol. 226, issue C, 522-533
Abstract:
In recent years, combined heat and power (CHP) systems have attracted increasing attention worldwide. Owing to their advantages of high overall thermal efficiency, fuel flexibility, low noise and vibration, and low emissions, Stirling engines, especially dynamic Stirling engines (i.e., free-piston Stirling engines, FPSEs) are promising candidates for micro-CHP systems. In this paper, recent progress in Stirling engine-based micro-CHP systems and FPSE modeling and analysis is first briefly reviewed, and then a hybrid calculation model based on thermoacoustic theory is proposed and developed to simulate the entire micro-CHP system. Finally, the construction and testing of a pilot setup is described in detail. The obtained experimental results clearly validate the numerical model and scheme, with the primary deviation within approximately 10%. CHP performance tests revealed a maximum CHP efficiency of 87.5% and an output electrical power of 2.9 kW, corresponding to a 28% thermal-to-electric efficiency, when the delivering temperature was above 60 °C. Furthermore, acoustic impedance analysis indicated that the CHP efficiency remains high over a large temperature lift, which was also confirmed experimentally.
Keywords: Combined heat and power; Free-piston Stirling engine; Linear alternator; Thermoacoustic (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918308432
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:226:y:2018:i:c:p:522-533
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.05.122
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().