Dynamic modeling of a particle/supercritical CO2 heat exchanger for transient analysis and control
M. Fernández-Torrijos,
K.J. Albrecht and
C.K. Ho
Applied Energy, 2018, vol. 226, issue C, 595-606
Abstract:
A dynamic model of a moving packed-bed particle-to-sCO2 heat exchanger and control system for concentrating solar power (CSP) applications is presented. The shell-and-plate heat-exchanger model allows for numerically investigating the transient operation and control of the heat addition to the power cycle in a particle-based CSP plant. The aim of the particle-to-sCO2 heat exchanger is to raise the sCO2 temperature to 700 °C at a pressure of 20 MPa. The control system adjusts both the particle and sCO2 mass flow rates as well as an sCO2 bypass to obtain the desired sCO2 turbine inlet and particle outlet temperatures for a prescribed thermal duty. The control system is demonstrated for disturbances in particle and sCO2 inlet temperatures as well as changes in thermal duty for part-load operation. A feed-forward control strategy that adjusts the sCO2 and particle mass-flow rates as functions of measured inlet temperatures and a steady-state model solution was able to return the heat exchanger to the desired operating condition, but not without experiencing significant deviations in the sCO2 turbine inlet and particle outlet temperature (>40 °C) during the transient. To reduce both sCO2 and particle temperature deviations, a feedback control strategy was investigated, where sCO2 and particle mass-flow rates based on the steady-state model solution were corrected based on measured outlet temperature deviations. The feedback control strategy maintains sCO2 turbine inlet and particle outlet temperature to within 16 °C of the set points with a three-minute settling time for step changes in inlet conditions and thermal duty. This finding demonstrates the possibility of dynamically dispatching next-generation particle-based CSP plants driving sCO2 power cycles.
Keywords: Heat exchanger; Shell-and-plate; Feed-forward control; Feedback control; Supercritical CO2; Falling particle receiver (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918308778
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:226:y:2018:i:c:p:595-606
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.06.016
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().