Thermodynamic analysis and optimization of multistage latent heat storage unit under unsteady inlet temperature based on entransy theory
Y.K. Liu and
Y.B. Tao
Applied Energy, 2018, vol. 227, issue C, 488-496
Abstract:
An optimization model for a multistage latent heat storage (LHS) unit with unsteady heat transfer fluid (HTF) inlet temperature was proposed. Thermodynamic analysis and optimization were performed based on the entransy theory. The expressions of the optimum phase change material (PCM) melting temperatures (Tm,opt) were derived. The effects of geometric parameters and unsteady HTF inlet temperature on the optimum phase change temperatures were investigated. The results indicate that with the increase of stage number (n), Tm1,opt increases and Tmn,opt decreases, which is beneficial to extend the selection range of PCM. For fixed entransy dissipation condition, increasing n will not change the fluctuation of the HTF outlet temperature; however a nearly uniform HTF outlet temperature can be obtained by increasing unit length (L). The unsteady HTF inlet temperature has great effects on the optimum phase change temperature. For a 3-stage LHS unit, the optimum phase change temperature of each stage increases by 14.9 K, 26.4 K and 38.0 K respectively with respect to the values obtained by steady method, which causes the heat storage capacity decreases by 6.1% and entransy dissipation decreases by 10.6%. The present work can provide guidance for the design of the multistage LHS unit with unsteady HTF inlet temperature.
Keywords: Multistage latent heat storage; Entransy theory; Unsteady state; Performance optimization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917314356
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:227:y:2018:i:c:p:488-496
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.10.021
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().