Forecasting day-ahead high-resolution natural-gas demand and supply in Germany
Ying Chen,
Wee Song Chua and
Thorsten Koch
Applied Energy, 2018, vol. 228, issue C, 1110 pages
Abstract:
Forecasting natural gas demand and supply is essential for an efficient operation of the German gas distribution system and a basis for the operational decisions of the transmission system operators. The German gas market is moving towards more short-term planning, in particular, day-ahead contracts. This increases the difficulty that the operators in the dispatching centre are facing, as well as the necessity of accurate forecasts. This paper presents a novel predictive model that provides day-ahead forecasts of the high resolution gas flow by developing a Functional AutoRegressive model with eXogenous variables (FARX). The predictive model allows the dynamic patterns of hourly gas flows to be described in a wide range of historical profiles, while also taking the relevant determinants data into account. By taking into account a richer set of information, FARX provides stronger performance in real data analysis, with both accuracy and high computational efficiency. Compared to several alternative models in out-of-sample forecasts, the proposed model can improve forecast accuracy by at least 12% and up to 5-fold for one node, 3% to 2-fold and 2-fold to 4-fold for the other two nodes. The results show that lagged 1-day gas flow and nominations are important predictors, and with their presence in the forecast model, temperature becomes insignificant for short-term predictions.
Keywords: Natural gas; Forecasting; Functional time-series; Autoregressive; Demand and supply (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918310080
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:228:y:2018:i:c:p:1091-1110
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.06.137
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().