EconPapers    
Economics at your fingertips  
 

Forecasting day-ahead high-resolution natural-gas demand and supply in Germany

Ying Chen, Wee Song Chua and Thorsten Koch

Applied Energy, 2018, vol. 228, issue C, 1110 pages

Abstract: Forecasting natural gas demand and supply is essential for an efficient operation of the German gas distribution system and a basis for the operational decisions of the transmission system operators. The German gas market is moving towards more short-term planning, in particular, day-ahead contracts. This increases the difficulty that the operators in the dispatching centre are facing, as well as the necessity of accurate forecasts. This paper presents a novel predictive model that provides day-ahead forecasts of the high resolution gas flow by developing a Functional AutoRegressive model with eXogenous variables (FARX). The predictive model allows the dynamic patterns of hourly gas flows to be described in a wide range of historical profiles, while also taking the relevant determinants data into account. By taking into account a richer set of information, FARX provides stronger performance in real data analysis, with both accuracy and high computational efficiency. Compared to several alternative models in out-of-sample forecasts, the proposed model can improve forecast accuracy by at least 12% and up to 5-fold for one node, 3% to 2-fold and 2-fold to 4-fold for the other two nodes. The results show that lagged 1-day gas flow and nominations are important predictors, and with their presence in the forecast model, temperature becomes insignificant for short-term predictions.

Keywords: Natural gas; Forecasting; Functional time-series; Autoregressive; Demand and supply (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918310080
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:228:y:2018:i:c:p:1091-1110

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.06.137

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:1091-1110