A survey of artificial neural network in wind energy systems
Alberto Pliego Marugán,
Fausto Pedro García Márquez,
Jesus María Pinar Perez and
Diego Ruiz-Hernández
Applied Energy, 2018, vol. 228, issue C, 1822-1836
Abstract:
Wind energy has become one of the most important forms of renewable energy. Wind energy conversion systems are more sophisticated and new approaches are required based on advance analytics. This paper presents an exhaustive review of artificial neural networks used in wind energy systems, identifying the methods most employed for different applications and demonstrating that Artificial Neural Networks can be an alternative to conventional methods in many cases. More than 85% of the 190 references employed in this paper have been published in the last 5 years. The methods are classified and analysed into four groups according to the application: forecasting and predictions; design optimization; fault detection and diagnosis; and optimal control. A statistical analysis of the current state and future trends in this field is carried out. An analysis of each application group about the strengths and weaknesses of each ANN structure is carried out. A quantitative analysis of the main references is carried out showing new statistical results of the current state and future trends of the topic. The paper describes the main challenges and technological gaps concerning the application of ANN to wind turbines, according to the literature review. An overall table is provided to summarize the most important references according to the application groups and case studies.
Keywords: Artificial neural networks; Wind turbines; Wind energy conversion systems (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918311048
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:228:y:2018:i:c:p:1822-1836
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.07.084
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().