A wind speed interval prediction system based on multi-objective optimization for machine learning method
Ranran Li and
Yu Jin
Applied Energy, 2018, vol. 228, issue C, 2207-2220
Abstract:
Accurate forecast of wind speed is the first prerequisite to supply high quality power energy to customer in a secure and economic manner. However, traditional point forecast may not be sufficiently reliable and accurate for decision-makers to perform operational strategies purely when the uncertainty level increases. For the sake of quantifying the uncertainty associated with point predictions, it is necessary to conduct interval prediction to provide reliable and accurate wind speed information. In this work, a hybrid model framework based on combinatorial modules was proposed and successfully adopted to construct the prediction intervals of the future wind speed. Feature selection methods are developed to determine the most suitable modes of original time series and the optimal input form of the model, while the optimization forecasting module is applied to model the wind speed series based on the machine learning method and the multi-objective optimization algorithm, then the compromise solution of Pareto front is chosen by “Min-max” method. Finally, the proposed combined model was investigated via the hourly wind speed data from two different periods in Penglai, China. Besides, the study’s experimental results indicated that the prediction intervals generated perform well and are satisfactory in both criterion functions of high coverage and small width through discussion among single-objective models and other multi-objective models (signal pre-processing method comparison included).
Keywords: Wind speed forecasting; Prediction intervals; Multi-objective optimization; Least squares support vector machines; Feature selection (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918310584
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:228:y:2018:i:c:p:2207-2220
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.07.032
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().