Cyclic performance of cascaded and multi-layered solid-PCM shell-and-tube thermal energy storage systems: A case study of the 19.9 MWe Gemasolar CSP plant
S. Saeed Mostafavi Tehrani,
Yashar Shoraka,
Karthik Nithyanandam and
Robert A. Taylor
Applied Energy, 2018, vol. 228, issue C, 240-253
Abstract:
A shell-and-tube heat exchanger which incorporates a sensible or phase change material (PCM) as the storage medium offers a potentially commercially viable alternative to the two-tank molten salt system. In particular, cascaded PCMs and multi-layered solid-PCMs (MLSPCMs) were investigated as proposed systems which can reduce the amount of storage material used and ensure optimal storage utilization. In this work, the performance of various thermal energy storage (TES) alternatives integrated into the 19.9 MWe Gemasolar concentrated solar power (CSP) plant (located in Seville, Spain) were compared with the conventional two-tank system. These alternative storage configurations were characterized by a single tank filled with a single, cascaded, or multi-layered storage media. Importantly, as a system-level study, this paper compared the performance of the design alternatives integrated with other CSP components in order to capture the effect of dynamic interactions between the storage system and other CSP components. Through a validated numerical investigation of the annual performance of the integrated systems, all the design alternatives were compared in the context of annual electricity generation, which represents the ultimate criterion to judge the true potential of each alternative. To conduct an apples-to-apples comparison, the storage capacity and geometric parameters were fixed. The design alternatives were categorized based on the storage materials involved and their percentages of occupancy in the TES tank (i.e. 12 storage groups and a total number of 45 design alternatives). It was found that the well-designed TES designs with cascaded PCMs performed similarly in charging and discharging (i.e. with a similar amount of total stored or delivered energy per cycle). This contrasts with a single PCM system, where there exists a significant difference between charging and discharging performance. The results of annual cyclic performance, under real-time operational conditions, indicated that a MLSPCM design configuration that was filled with a high melting point PCM in the top 25% of the tank, sensible concrete in the middle 50%, and a low melting point PCM in the bottom 25% of the tank had the best performance among all design alternatives studied. Moreover, it was found that changing the filler portions any one cascaded PCM group cannot significantly change the annual performance of the system. Contrary to much of the available literature – literature which does not consider system integration – it was shown that the shell-and-tube alternatives can only approach the annual performance of two-tank systems under ‘extended’ operational conditions (i.e. allowing temperature set points to float relatively far away from their fixed design points).
Keywords: Cascade; Phase change material; Concrete; Thermal energy storage; Shell and tube (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918309553
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:228:y:2018:i:c:p:240-253
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.06.084
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().