An auction framework to integrate dynamic transmission expansion planning and pay-as-bid wind connection auctions
Niall Farrell,
Mel T. Devine and
Alireza Soroudi
Applied Energy, 2018, vol. 228, issue C, 2462-2477
Abstract:
Competitive renewable energy procurement auctions are becoming increasingly prevalent. In a pay-as-bid auction, investors bid the price support required and receive that price if successful. Bidding strategy may be influenced by factors external to the auction, such as transmission expansion planning decisions. This may increase costs. In this paper, we show that integrating a pay-as-bid auction with transmission expansion planning may allow for closer total system cost minimisation over many time periods. This paper develops an auction mechanism and associated modelling framework to carry this out. The contributions of this framework are verified using a numerical example. Our results show that ignoring generation costs in transmission expansion planning can have economic consequences, while traditional pay-as-bid auctions can benefit from incorporating features associated with transmission expansion planning, such as multi-period optimisation. Full integration of both modelling frameworks can lead to efficiency improvements, both in terms of reduced investor rent-seeking and a more efficient deployment path.
Keywords: Renewable energy; Electricity transmission; Optimisation; Auction design (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918309449
Full text for ScienceDirect subscribers only
Related works:
Working Paper: An Auction Framework to Integrate Dynamic Transmission Expansion Planning and Pay-as-bid Wind Connection Auctions (2016) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:228:y:2018:i:c:p:2462-2477
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.06.073
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().