EconPapers    
Economics at your fingertips  
 

Humidification strategy for polymer electrolyte membrane fuel cells – A review

Yafei Chang, Yanzhou Qin, Yan Yin, Junfeng Zhang and Xianguo Li

Applied Energy, 2018, vol. 230, issue C, 643-662

Abstract: Polymer electrolyte membrane fuel cells are promising power sources because of their advantage such as high efficiency, zero emission and low operating temperature. Water management is one of the critical issues for polymer electrolyte membrane fuel cells and has received significant attention. The membrane within the fuel cell needs to stay in hydrated state to have high ion conductivity and durability, which requires proper humidification. Both internal and external methods have been utilized to humidify the polymer electrolyte membrane. Numerous studies on fuel cell humidification have been conducted in the past decades, especially in recent years. This review aims to summarize the main humidification methods and the related studies. The internal humidification methods are classified as physical methods and chemical methods. The external humidification methods include gas bubbling humidification, direct water injection, enthalpy wheel humidification, membrane humidifiers, and exhaust gas recirculation. The working principle and performance of each method are introduced and the advantage and drawback are summarized. Further, the humidification methods for alkaline anion exchange membrane fuel cells are also briefly reviewed, because of more recent studies showing their potential of using non-precious metal catalysts. This review can help to choose proper humidification strategy for specific polymer electrolyte membrane fuel cell application and may inspire further investigations.

Keywords: Polymer electrolyte membrane fuel cell; Humidification; Water management; External; Internal (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (38)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918312996
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:230:y:2018:i:c:p:643-662

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.08.125

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:230:y:2018:i:c:p:643-662