An empirical model as a supporting tool to optimize the main design parameters of a stationary oscillating water column wave energy converter
I. Simonetti,
L. Cappietti and
H. Oumeraci
Applied Energy, 2018, vol. 231, issue C, 1205-1215
Abstract:
An empirical model, to be used as a tool to aid in the definition of the optimal values of the main design parameters of oscillating water column wave energy converter devices, is proposed. An extensive dataset of capture width ratio of the device, obtained from both experimental tests and Computational Fluid Dynamics simulations, is used to formulate the model. The model has been developed by applying the dimensional analysis to select the non-dimensional independent variables of the functional form. A multiple non-linear regression method is used to compute the model power coefficients and empirical constants. The model can predict the capture width ratio of the oscillating water column device given the wave conditions, the water depth, the geometrical parameters of the device and the turbine damping as input variables. It can be used in the preliminary stage of the device design, allowing to comparatively test a considerable number of design alternatives with reduced computational efforts. Though based on regression analysis, the model implicitly includes all the non-linear effects observed experimentally and numerically. The relevance of the proposed model is demonstrated by an example application to a selected installation site in the Mediterranean Sea.
Keywords: Wave energy converter; Oscillating water column; Capture width ratio; Empirical model; Regression model; Performance optimization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918314119
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:231:y:2018:i:c:p:1205-1215
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.09.100
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().