An Adsorption Reverse Electrodialysis system for the generation of electricity from low-grade heat
C. Olkis,
G. Santori and
S. Brandani
Applied Energy, 2018, vol. 231, issue C, 222-234
Abstract:
A novel process is presented to generate electricity from low-grade heat by combining a Reverse Electrodialysis membrane with an Adsorption desalinator in a closed-loop system. A Reverse Electrodialysis membrane generates electricity by controlled mixing of two salt solutions of different concentrations. An Adsorption desalinator restores the initial salt gradient by utilising low-grade heat for the separation. In this study the process is designed from optimising the salt and material selection to the development of the real system application. Energy and exergy efficiencies of the proposed system show the potential of this novel renewable energy technology. The efficiencies of 227 salts with a range of different valences and 10 adsorption materials have been investigated over a large number of system parameters. The results show that the optimised system can achieve an exergy efficiency of up to 30%. Moreover, high salt concentrations do not significantly increase the specific energy consumption of the Adsorption desalinator, which allows operating the Reverse Electrodialysis membrane at the optimal salt concentrations.
Keywords: Adsorption desalination; Reverse Electrodialysis; Pitzer correlations; Gibbs free energy; Closed-loop (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191831420X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:231:y:2018:i:c:p:222-234
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.09.112
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().