A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization
Chengshi Tian,
Yan Hao and
Jianming Hu
Applied Energy, 2018, vol. 231, issue C, 319 pages
Abstract:
Wind speed forecasting is an important task in large-scale wind power integration that can eliminate the harmful influence caused by its inherent intermittence and volatility. To achieve high-precision wind speed forecasting, hybrid systems that combine artificial intelligence algorithms have been widely employed. However, in most previous studies, in the learning process of wind speed forecasting using hybrid systems, two open challenges arise: it is hard to ensure that the main features of wind speed data can be completely extracted using simple data preprocessing, and attempting to enhance only the accuracy while ignoring the stability is insufficient in practical applications. In this study, a novel hybrid forecasting system is successfully proposed to solve the abovementioned issues, with the following novel contributions: (i) a new data preprocessing algorithm is developed based on the proposed hybrid data preprocessing strategy, which combines the advantages of each meritorious component and appears to be a promising data preprocessing method; and (ii) the Elman neural network model, improved by our newly proposed multi-objective satin bowerbird optimizer algorithm, is successfully developed, which provides a great contribution to the excellent forecasting performance in terms of accuracy and stability. To verify the forecasting effectiveness of the system, several forecasting cases based on eight wind speed datasets are presented in this study, and the results reveal that the proposed system has better forecasting accuracy and stability than other benchmark models and can be used to enhance the utilization efficiency of wind energy as well as other fields.
Keywords: Wind speed; Hybrid forecasting; Optimization; Prediction (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (39)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918313199
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:231:y:2018:i:c:p:301-319
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.09.012
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().