Future perspectives of run-of-the-river hydropower and the impact of glaciers’ shrinkage: The case of Italian Alps
Epari Ritesh Patro,
Carlo De Michele and
Francesco Avanzi
Applied Energy, 2018, vol. 231, issue C, 699-713
Abstract:
We assess the impacts of nine climate-change scenarios on the hydrological regime and on hydropower production of forty-two glacierized basins across the Italian Alps, assumed exemplary of similar systems in other glacierized contexts. Each of these basins includes one (or more) hydropower plant, here treated as a run-of-the-river system. We implemented a semi-distributed hydrologic model that divides each basin in elevation bands and reconstructs orographic effects on both precipitation and temperature. The nine climate-change scenarios quantify the individual and combined effects of an increase in temperature and a change in liquid-solid phase partition. The simulation horizon is 2016–2065. Thus, we avoided long-term scenarios and worked at short-medium range to maximize the relevance of this work for decision makers. Our results predict a decline of about −30% in average summer runoff across all basins compared to present. Because most of this decrease in runoff occurs during high-flow periods when the run-of-the-river capacity of these plants is exceeded, this result translates into a median decrease of about −3% in hydropower production for run-of-the-river systems through 2065, across all the basins and all scenarios. The predominant cause of this decline is glacier shrinkage, whereas different temperature or precipitation trends plays a marginal role. Run-of-the-river hydropower production in basins where the current glacier coverage is less than 10% of total area is particularly robust to climate change.
Keywords: Climate change; Glaciers; Hydroelectric production; Hydrologic modeling; Italian Alps run-of-the-river (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918313795
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:231:y:2018:i:c:p:699-713
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.09.063
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().