Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate
Kavan Javanroodi,
Mohammadjavad Mahdavinejad and
Vahid M. Nik
Applied Energy, 2018, vol. 231, issue C, 714-746
Abstract:
Cooling buildings in urban areas with hot-arid climate put huge loads on the energy system. There is an increasing trend in urban energy studies to recognize the urban design variables and parameters associated with the energy performance of buildings. In this work, a novel approach is introduced to investigate the impacts of urban morphology on cooling load reduction and enhancing ventilation potential by studying a high-rise building (target building), surrounded by different urban configurations, during six warm months of the year in Tehran at four major sections including: (1) generating 1600 urban case studies considering three parameters (Urban Density, Urban Building Form, and Urban Pattern) and modelling the urban morphology of Tehran based on a technique namely “Building Modular Cells”, (2) validation study of CFD simulation of the wind flow around buildings, (3) calculating the average cooling load and wind flow at the rooftop of the target building, and (4) investigating sixteen best urban configurations with the lowest cooling load and highest ventilation potential. Results indicate that urban morphology has a notable impact on the energy consumption of buildings, decreasing cooling load and increasing ventilation potential more than 10% and 15% respectively, compared to the typical cases. This work also proposes design solutions for architects and urban designers, based on Top 100 configurations (out of 1600), for improved energy performance and better ventilation of buildings in urban areas.
Keywords: Urban morphology; Urban energy; Cooling load; Ventilation; High-rise buildings; Hot-arid climate (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (33)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918314260
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:231:y:2018:i:c:p:714-746
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.09.116
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().