EconPapers    
Economics at your fingertips  
 

Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm

Choton K. Das, Octavian Bass, Ganesh Kothapalli, Thair S. Mahmoud and Daryoush Habibi

Applied Energy, 2018, vol. 232, issue C, 212-228

Abstract: The deployment of utility-scale energy storage systems (ESSs) can be a significant avenue for improving the performance of distribution networks. An optimally placed ESS can reduce power losses and line loading, mitigate peak network demand, improve voltage profile, and in some cases contribute to the network fault level diagnosis. This paper proposes a strategy for optimal placement of distributed ESSs in distribution networks to minimize voltage deviation, line loading, and power losses. The optimal placement of distributed ESSs is investigated in a medium voltage IEEE-33 bus distribution system, which is influenced by a high penetration of renewable (solar and wind) distributed generation, for two scenarios: (1) with a uniform ESS size and (2) with non-uniform ESS sizes. System models for the proposed implementations are developed, analyzed, and tested using DIgSILENT PowerFactory. The artificial bee colony optimization approach is employed to optimize the objective function parameters through a Python script automating simulation events in PowerFactory. The optimization results, obtained from the artificial bee colony approach, are also compared with the use of a particle swarm optimization algorithm. The simulation results suggest that the proposed ESS placement approach can successfully achieve the objectives of voltage profile improvement, line loading minimization, and power loss reduction, and thereby significantly improve distribution network performance.

Keywords: Energy storage systems; Energy storage system allocation; Voltage profile improvement; Line loading reduction; Power loss minimization; Particle swarm optimization; Artificial bee colony optimization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918311358
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:232:y:2018:i:c:p:212-228

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.07.100

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:232:y:2018:i:c:p:212-228