Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation
Dietmar Strübing,
Andreas B. Moeller,
Bettina Mößnang,
Michael Lebuhn,
Jörg E. Drewes and
Konrad Koch
Applied Energy, 2018, vol. 232, issue C, 543-554
Abstract:
Increasing energy production from variable renewable sources, especially wind and solar photovoltaic, requires measures to maintain a stable electricity grid that balances power production and demand. Flexible conversion of excess renewable energy into a storable substitute natural gas via H2/CO2 biomethanation may be a suitable approach for tackling this challenge. This study investigated the performance of an anaerobic thermophilic trickle bed reactor (ATTBR) during demand-oriented H2/CO2 biomethanation. Different combinations of standby periods (SPs) varying from 1 to 8 days and standby temperatures (25 °C and 55 °C) as well as their repetitive effect on the biological gas conversion performance were systematically evaluated using a standardized restart procedure. The results revealed that the influence of the SP temperature on the restart performance by far outweighed the length of SP investigated. While the investigated ATTBR represents a robust system with a very good restart performance after 25 °C SPs, the repetitive effect of 55 °C SPs was in particular identified as a critical standby setting that causes deterioration of the restart performance. This may be attributed to increased inactivation rates for thermophilic hydrogenotrophic methanogens at 55 °C, which also influences volatile fatty acid transformation dynamics and leads to substantial propionate accumulation (∼3000 mg/L) during 55 °C SPs. For the application of ATTBR in dynamic energy conversion and storage scenarios, further research is required to reduce response times and enhance flexibility.
Keywords: Power-to-Gas; Biological methanation; Variable renewable energies; Standby strategies; Biomass decay; Volatile fatty acids (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918315538
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:232:y:2018:i:c:p:543-554
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.09.225
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().