Incentive-based demand response for smart grid with reinforcement learning and deep neural network
Renzhi Lu and
Seung Ho Hong
Applied Energy, 2019, vol. 236, issue C, 937-949
Abstract:
Balancing electricity generation and consumption is essential for smoothing the power grids. Any mismatch between energy supply and demand would increase costs to both the service provider and customers and may even cripple the entire grid. This paper proposes a novel real-time incentive-based demand response algorithm for smart grid systems with reinforcement learning and deep neural network, aiming to help the service provider to purchase energy resources from its subscribed customers to balance energy fluctuations and enhance grid reliability. In particular, to overcome the future uncertainties, deep neural network is used to predict the unknown prices and energy demands. After that, reinforcement learning is adopted to obtain the optimal incentive rates for different customers considering the profits of both service provider and customers. Simulation results show that this proposed incentive-based demand response algorithm induces demand side participation, promotes service provider and customers profitabilities, and improves system reliability by balancing energy resources, which can be regarded as a win-win strategy for both service provider and customers.
Keywords: Artificial intelligence; Reinforcement learning; Deep neural network; Incentive-based demand response; Smart grid (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (101)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918318798
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:236:y:2019:i:c:p:937-949
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.12.061
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().