EconPapers    
Economics at your fingertips  
 

Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load

Lei Xu, Shengwei Wang and Rui Tang

Applied Energy, 2019, vol. 237, issue C, 180-195

Abstract: This paper presents a new probabilistic building load forecasting model considering uncertainties in weather forecasts and abnormal peak load. Two basis function components are developed, including the probabilistic normal load forecasting and the probabilistic uncertain peak load (or abnormal peak load) forecasting. The probabilistic normal load forecasting model is built using the artificial neural network (ANN) and the probabilistic temperature forecasts. The probabilistic abnormal peak load forecasting model consists of two models quantifying the probabilistic occurrence and magnitude of the peak abnormal differential load respectively. The test results show that the ANN deterministic load forecasting model can achieve satisfactory performance with the average mean absolute percentage error (MAPE) of 5.0%. The probabilistic occurrence model can forecast the occurrence frequency of the peak abnormal differential load with the satisfactory agreement, and the probabilistic magnitude model can well forecast the magnitudes of the peak abnormal differential load with the Kolmogorov-Smirnov error of 0.09. Real-time application case studies are conducted by different means of using the probabilistic weather forecasts. The results show that the probabilistic normal load forecasts have satisfactory accuracies and the load forecasts based on the one-day-ahead probabilistic weather forecasts are the best.

Keywords: Probabilistic load forecasting; Uncertain peak load forecasting; ANN model; Statistical model; Probabilistic weather forecasts (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919300224
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:237:y:2019:i:c:p:180-195

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.01.022

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:237:y:2019:i:c:p:180-195