Multi-time scale dynamic analysis of integrated energy systems: An individual-based model
L.X. Wang,
J.H. Zheng,
M.S. Li,
X. Lin,
Z.X. Jing,
P.Z. Wu,
Q.H. Wu and
X.X. Zhou
Applied Energy, 2019, vol. 237, issue C, 848-861
Abstract:
This paper proposes an individual-based model (IBM) for the modeling of large-scale heterogenous complex systems. The IBM decouples the complex systems into independent individuals based on physical characteristics. In order to formulate the actions of individuals and interactions between individuals, the IBM is formalized with a quintuple parameter set comprised of input, knowledge, state, function, and output sets. Accordingly, individuals can make decisions independently applying accurate evolutionary mechanisms described in the function set. Additionally, the individuals can interact with others by input and output sets in a uniform manner. Consequently, a complex system can be modelled by independent individuals whose internal characteristics are fully specified and hidden from the external environment. The IBM is applied to model heterogenous integrated energy systems (IES) and simulate the multi-time scale dynamics of the IES under conditions of disturbances and faults. The results show that the IBM are capable of simulating quantified system states and unquantified rules of the IES dynamics simultaneously. Furthermore, the IBM can significantly improve the computation efficiency in terms of computation time and interaction, compared with the traditional equal-step method. Therefore, it is verified that the proposed IBM is an efficient method for complex systems.
Keywords: Integrated energy system; Individual-based model; Multi-time scale simulation; Dynamic analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919300431
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:237:y:2019:i:c:p:848-861
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.01.045
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().