Design of segmented thermoelectric Peltier coolers by topology optimization
Christian Lundgaard and
Ole Sigmund
Applied Energy, 2019, vol. 239, issue C, 1003-1013
Abstract:
A density-based topology optimization approach is used to optimize the cooling power and efficiency (coefficient of performance) of thermoelectric coolers by spatially distributing two different thermoelectric materials in a two dimensional design space. With basis in three numerical examples we identify important model parameters, such as the choice of objective function, the temperatures of the thermal reservoirs, the heat transfer rates and the available electrical energy. By using the topology optimization approach, we demonstrate that the cooling power and efficiency of thermoelectric coolers can be improved by 48.7% and 11.4%, respectively, compared to optimization results from in the literature.
Keywords: Topology optimization; Thermoelectric energy conversion; Peltier coolers; Segmentation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919302776
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:239:y:2019:i:c:p:1003-1013
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.01.247
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().