EconPapers    
Economics at your fingertips  
 

Potential of long-chain oxymethylene ether and oxymethylene ether-diesel blends for ultra-low emission engines

Ahmad Omari, Benedikt Heuser, Stefan Pischinger and Christoph Rüdinger

Applied Energy, 2019, vol. 239, issue C, 1242-1249

Abstract: Oxymethylene ether (OMEn) has recently drawn high attention due to its high pollutant emission reduction potential and the sustainable synthesis pathways involving carbon capture and renewable hydrogen. In this work, five blends of OMEn in diesel fuel in addition to pure OME3-5 and diesel fuel as reference were investigated in a single cylinder engine. Each OMEn-Diesel blend was prepared with a different chain length, ranging from OME1 to OME5. The blending ratio of OMEn in fossil diesel fuel was set to 35 vol%, corresponding to a ∼23.5% diesel fuel substitution on a heating value basis. We find that OMEn contributes to improved oxidation conditions, resulting in a more complete combustion compared to conventional diesel fuel operation. This is reflected by reduced emissions of unburned hydrocarbons and carbon monoxide (up to 90%), higher burned mass fractions after the main combustion phase, higher indicated efficiencies (up to +3%) and lower exhaust gas temperatures (up to −70 °C). Furthermore, while pure OMEn burns soot-free, a significant soot reduction was measured for the OMEn-Diesel blends.

Keywords: Oxymethylene ether; Oxygenate; Diesel fuel blend; E-fuels; Alternative fuels; Soot (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919303290
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:239:y:2019:i:c:p:1242-1249

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.02.035

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:1242-1249