EconPapers    
Economics at your fingertips  
 

Demand response algorithms for smart-grid ready residential buildings using machine learning models

Fabiano Pallonetto, Mattia De Rosa, Federico Milano and Donal P. Finn

Applied Energy, 2019, vol. 239, issue C, 1265-1282

Abstract: This paper assesses the performance of control algorithms for the implementation of demand response strategies in the residential sector. A typical house, representing the most common building category in Ireland, was fully instrumented and utilised as a test-bed. A calibrated building simulation model was developed and used to assess the effectiveness of demand response strategies under different time-of-use electricity tariffs in conjunction with zone thermal control. Two demand response algorithms, one based on a rule-based approach, the other based on a predictive-based (machine learning) approach, were deployed for control of an integrated heat pump and thermal storage system. The two algorithms were evaluated using a common demand response price scheme. Compared to a baseline reference scenario, the following reductions were observed: electricity end-use expenditure (20.5% rule-based and 41.8% predictive algorithm), utility generation cost (18.8% rule-based and 39% predictive algorithm), carbon emissions (20.8% rule-based and 37.9% predictive algorithm).

Keywords: Building demand response; Optimisation; Machine learning; Control algorithms; Smart grids; Energy efficiency (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919303101
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:239:y:2019:i:c:p:1265-1282

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.02.020

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:1265-1282