A novel heat exchanger design procedure for photovoltaic panel cooling application: An analytical and experimental evaluation
M.U. Siddiqui,
Osman K. Siddiqui,
A. Al-Sarkhi,
A.F.M. Arif and
Syed M. Zubair
Applied Energy, 2019, vol. 239, issue C, 56 pages
Abstract:
The performance of photovoltaic modules is adversely affected by an increase in photovoltaic cell temperature. Cooling of panels may lead to temperature non-uniformity in the photovoltaic panel, thus limiting the maximum efficiency of the cooled photovoltaic panel. In the current work, the design of a novel heat exchanger that can be used for uniform cooling of photovoltaic modules is presented. For this purpose, a computational fluid dynamics model has been set up. Using the model, the effects of various heat exchanger design parameters (like channel numbers, manifold width, the location of inlet/exit ports, and tapered channels) on its performance are sequentially analyzed resulting in fourteen designs. The performance is quantified by three parameters: top surface average temperature, temperature non-uniformity for photovoltaic module cooling quality, and the heat transfer per unit pumping power. The resulting optimized design is found to be a novel V-shaped heat exchanger design for the photovoltaic module cooling. It has a lower average temperature and temperature non-uniformity, smaller hotspots, and lower pumping power. The optimal design is further examined using experimental particle image velocimetry measurements.
Keywords: Photovoltaic; Cooling; Heat exchanger design; Flow uniformity; Particle image velocimetry (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919302132
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:239:y:2019:i:c:p:41-56
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.01.203
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().