EconPapers    
Economics at your fingertips  
 

Performance optimization of bi-layer solar steam generation system through tuning porosity of bottom layer

Shang Liu, Congliang Huang, Xiao Luo and Chuwen Guo

Applied Energy, 2019, vol. 239, issue C, 504-513

Abstract: In recent years, solar steam generation has attracted many attentions due to its potential applications in desalination, etc. In the present work, a bi-layer solar steam generation system is prepared by daubing carbon particles on the sintered sawdust film, which possesses an advantage of adjustable porosities compared to widely used wood. Then, the influence of the porosity on the evaporation performance is explored. The experimental result indicates that: the porosity could significantly affect the water transportation in the film, and the water diffusivity increases almost linearly with the increase of the porosity. The evaporation efficiency increases with the increasing porosity, until the porosity reaches about 0.52 then decrease slowly. The positive effect of the increased water diffusivity and the negative effect of the increased thermal conductivity of the bottom film layer determine that the porosity of 0.52 is optimal for improving the evaporation efficiency. Under a solar light power of 1 kW·m−2, the optimal porosity gives an evaporation efficiency of 77.64%, which is comparable to the best performance of bi-layer systems reported in previous works. The conduction of heat through the bottom layer to the bulk water and the convection heat loss on the top surface contribute 83% to the total heat losses in the system, suggesting that the energy losses of these two modes should be further reduced in the future applications. Considering the accessible materials, easy preparation, low cost and high efficiency, we conclude that the 0.52-porosity system is suitable for being used as an efficient solar steam generation device.

Keywords: Solar energy; Solar steam generation; Porous material; Thermal conductivity (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919302818
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:239:y:2019:i:c:p:504-513

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.01.254

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:504-513