EconPapers    
Economics at your fingertips  
 

Optimization of ground heat exchanger using microencapsulated phase change material slurry based on tree-shaped structure

Liang Pu, Lingling Xu, Shengqi Zhang and Yanzhong Li

Applied Energy, 2019, vol. 240, issue C, 860-869

Abstract: Taking into account the potential of the tree-shaped ground heat exchanger to reduce pressure losses and microencapsulated phase change material slurry to enhance heat transfer performance, a new attempt combining microencapsulated phase change material slurry with tree-shaped structure is proposed in this paper. Firstly, to obtain the optimal structure of tree-shaped ground heat exchanger, influences of structure parameters on thermo-fluidic performance of ground heat exchanger are explored. Based on this optimal structure, numerical simulations adopting Eulerian-Eulerian approach are conducted to study hydraulic and heat transfer performance of microencapsulated phase change material slurry flowing through horizontal tree-shaped structure under constant flux. Comparison studies between different working fluid: water and microencapsulated phase change material slurry and different types of tube: horizontal straight tube and Y tube (tree-shaped tube) are studied. The results indicate that the numerical results accordwellwith experimental results. For tree-shaped ground heat exchanger with bifurcation level of 1, the optimal pipe diameter ratio meets D0/D1=23/7, D1/D2=1 and the optimal length ratio is L0/L1=1. Furthermore, the combination of microencapsulated phase change material slurry and tree-shaped structure can efficiently enhance thermal performance and reduce pressure losses. Considering comprehensive performance of microencapsulated phase change material slurry, the optimal volume fraction is 12% for Y tube, whose overall performance is 38.9% higher than that of pure water flowing through straight tube.

Keywords: Tree-shaped structure; Microencapsulated phase change material slurry; Parametric optimization; Hydraulic and heat transfer performance (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919303885
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:240:y:2019:i:c:p:860-869

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.02.088

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:240:y:2019:i:c:p:860-869