A validated model of a photovoltaic water pumping system for off-grid rural communities
Simon Meunier,
Matthias Heinrich,
Loïc Quéval,
Judith A. Cherni,
Lionel Vido,
Arouna Darga,
Philippe Dessante,
Bernard Multon,
Peter K. Kitanidis and
Claude Marchand
Applied Energy, 2019, vol. 241, issue C, 580-591
Abstract:
The low electrification rate in rural sub-Saharan Africa prevents access to energy services which are essential to improve living conditions. One of these energy services is electrified water pumping, which is particularly relevant for these areas where water access continues being a significant challenge. Pumping systems powered by photovoltaic energy have emerged as an interesting solution in off-grid areas. This article presents a model of photovoltaic water pumping system (PVWPS) for providing domestic water to off-grid rural communities. The model simulates the pumped flow rate and the water level in the storage tank from the climatic data (irradiance, ambient temperature) and the profile of water collection by the users of the system. The modelling of the different stages of the energy conversion chain and a method for identifying the unknown parameters of PVWPS are presented in this article. The model is applied to a pilot PVWPS situated in a rural village of Burkina Faso. The comparison between the measurements performed on the system and the model outputs allows to validate the model experimentally. Results indicate that the model permits to accurately simulate the water height in the tank both when climatic data from local sensors and from satellite are inputted in the model. The model could therefore be applied to other off-grid areas to perform techno-economic optimization and size new PVWPS as well as to evaluate the performances of existing PVWPS. The originalities of this work include the consideration of the water collection profile as a model input and the monitoring of a PVWPS in a rural village of Sub-Saharan Africa, an area where no continuous measurements on these systems has been performed, to the best knowledge of the authors. Further, the comparison of the impact of inputting satellite climatic data instead of measured ones on the PVWPS model accuracy is also a novel contribution.
Keywords: Photovoltaic system; Solar resource; Energy conversion; Water pumping; Data validated model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919304349
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:241:y:2019:i:c:p:580-591
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.03.035
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().