EconPapers    
Economics at your fingertips  
 

Dynamic modeling of a dual fluidized-bed system with the circulation of dry sorbent for CO2 capture

Youngsan Ju and Chang-Ha Lee

Applied Energy, 2019, vol. 241, issue C, 640-651

Abstract: In CO2 capture processes with the circulation of dry sorbents, the regeneration energy as well as the capture efficiency are the key factors determining the overall energy efficiency of the CO2 capture. In an aspect of repeated circulation and regeneration of a sorbent, a dynamic model for a dual fluidized-bed system was developed, which includes a fast fluidized-bed carbonator and a bubbling fluidized-bed regenerator. A potassium carbonate-based sorbent for CO2 capture was applied in the fluidized-bed system and rigorous kinetic models for the carbonation and regeneration reactions were adopted. The validity of the developed model was confirmed by accurately predicting the experimental results from the dual fluidized-bed system at various operating conditions. The CO2 removal performance was found to slightly deteriorate from 52.8 to 51.9% during continuous cyclic operation when the regeneration was carried out under a nitrogen atmosphere at 150 °C. However, when CO2 gas was used for the regeneration under the same conditions, the capture performance dropped to 18.6% owing to partial regeneration of the sorbent. A case study for the regeneration condition was conducted using a CO2-rich gas to find the effective regeneration condition. The regeneration conversion under CO2 atmosphere could be improved by increasing the regeneration gas velocity and regeneration temperature. At a regeneration temperature of 160 °C, the capture performance was found to be 73.2%, with the energy required to capture one mole of CO2 being 234.8 kJ/mol-CO2. To reduce the energy requirement to less than 200 kJ/mol-CO2 in the dual fluidized-bed system, a granulated sorbent, satisfying the physical and chemical stability for fluidized-bed operation, should be developed for the regeneration below 145 °C with the same working capacity (0.46 mol/kg-solid). Alternatively, the working capacity should be improved by 30% at the regeneration temperature of 160 °C. The developed model can be further used for improving capture performance and energy efficiency.

Keywords: CO2 capture process; K2CO3-based sorbent; Fast fluidized-bed; Bubbling fluidized-bed; Dynamic model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919304787
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:241:y:2019:i:c:p:640-651

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.03.070

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:241:y:2019:i:c:p:640-651