Gas-fired chemical looping combustion with supercritical CO2 cycle
Navid Khallaghi,
Dawid P. Hanak and
Vasilije Manovic
Applied Energy, 2019, vol. 249, issue C, 237-244
Abstract:
Oxy-fuel combustion is currently gathering attention as one of the promising options for capturing CO2 efficiently, when applied to power plants, for subsequent carbon sequestration. However, this option requires a large quantity of high-purity oxygen that is usually produced in an energy-intensive air separation unit (ASU). Chemical looping combustion (CLC) is a technology with the potential of reducing the costs and energy penalties associated with current state-of-the-art cryogenic ASUs. In this work, the techno-economic performance of a natural gas-fired oxy-combustion cycle with cryogenic ASU is compared with that based on CLC. Two natural gas-fired cycles are considered: (i) staged oxy-fuel natural gas combined cycle as a reference; and (ii) gas-fired CLC with supercritical CO2 cycle. The process models were developed in Aspen Plus® in order to evaluate the thermodynamic performance of the proposed system and to benchmark it against the reference cycle. The results show that the net efficiency of the proposed cycle, including CO2 compression, is more than 51%, which is comparable to that of a conventional natural gas combined cycle with CO2 capture and 2.7% points higher than that of the reference cycle. Moreover, the economic evaluation indicates that a reduction in levelised cost of electricity from £38.3/MWh to £36.1/MWh can be achieved by replacement of the ASU-based oxy-fuel system with CLC. Hence, gas-fired CLC with a supercritical CO2 cycle has high potential for commercialisation.
Keywords: Carbon capture; Oxy-fuel turbine; Cryogenic ASU; Chemical looping combustion; Natural gas combined cycle; Oxygen production (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919307597
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:249:y:2019:i:c:p:237-244
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.04.096
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().