Experimental investigation of a cementitious heat storage medium incorporating a solar salt/diatomite composite phase change material
Adio Miliozzi,
Manila Chieruzzi and
Luigi Torre
Applied Energy, 2019, vol. 250, issue C, 1023-1035
Abstract:
Thermal energy storage is one of the most appropriate technologies to correct the gap between the energy generation and supply and to address energy challenges. Concrete is generally the preferred “solid” heat storage material because its low cost and good thermal conductivity. The major disadvantage is its low heat stored density involving the use of large amounts of concrete. Latent heat storage materials (or phase change materials), have received more attention due to much higher heat storage density and extremely smaller temperature variation during the thermal energy charge/discharge process. These materials can be incorporated in the concrete by using different methods. When the phase change material is encapsulated or added in a shape-stabilized new material, as diatomite, the phase change material leakage is avoided. Thermal and mechanical characteristics of a new heat storage material, composed by concrete with the addition of 2% Solar Salts by weight (as phase change material) in powder or capsules form, were analyzed. The results showed an increase of the main thermal (volumetric heat capacity and conductivity) and mechanical properties while phase change material leakage was not observed. In particular, the phase change material/diatomite capsules provide a better behavior even after 250 °C.
Keywords: Thermal energy storage; Cementitious heat storage; PCM; Diatomite (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919309511
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:250:y:2019:i:c:p:1023-1035
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.05.090
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().