Combustion improvement and emission reduction through control of ethanol ratio and intake air temperature in reactivity controlled compression ignition combustion engine
Seongin Jo,
Suhan Park,
Hyung Jun Kim and
Jong-Tae Lee
Applied Energy, 2019, vol. 250, issue C, 1418-1431
Abstract:
The reactivity controlled compression ignition (RCCI) combustion has the potential to simultaneously reduce the NOX and PM emissions and maintain combustion performance even when injection timing is advanced. Because intake air temperature is an important factor affecting the reactivity of fuels, it is necessary to study optimized fuel supply ratios according to the intake air temperature. Therefore, the purpose of this study was to analyze combustion and exhaust characteristics in relation to the fuel supply ratio, injection timing, and intake air temperature. In this study, ethanol was injected into an intake port; increasing the ethanol supplied ratio increased the ignition delay. Thus, the net indicated mean effective pressure (IMEPnet), compared with conventional diesel combustion, increased from 4.14 to 4.90 bar for the advanced injection timing (BTDC 27°). In addition, because the combustion period was lengthened and combustion temperature lowered, the NOX emission decreased (19.1 → 2.7 g/kWh); however, the THC (1.1 → 2.5 g/kWh) and CO (5.2 → 10.1 g/kWh) emissions increased. Moreover, burning an homogeneous mixture of ethanol decreased the particulate matter emission from 74 to 45 μg/m3. However, under high intake air temperature conditions, the effect of ethanol ratio on ignition delay was small. Therefore, the injection timing at which the maximum IMEPnet occurred was retarded. In addition, as the intake air temperature increased, the THC and CO emissions decreased and that of NOX increased.
Keywords: Reactive controlled compression ignition (RCCI) combustion; Intake air temperature; Ethanol supplied ratio; Net indicated mean effective pressure (IMEPnet); Nitrogen oxides; Particulate matter (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919308670
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:250:y:2019:i:c:p:1418-1431
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.05.012
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().