Acceptability, energy consumption, and costs of electric vehicle for ride-hailing drivers in Beijing
Wei Tu,
Paolo Santi,
Tianhong Zhao,
Xiaoyi He,
Qingquan Li,
Lei Dong,
Timothy J. Wallington and
Carlo Ratti
Applied Energy, 2019, vol. 250, issue C, 147-160
Abstract:
The acceptability, energy consumption, and environmental benefits of electric vehicles are highly dependent on travel patterns. With increasing ride-hailing popularity in mega-cities, urban mobility patterns are greatly changing; therefore, an investigation of the extent to which electric vehicles would satisfy the needs of ride-hailing drivers becomes important to support sustainable urban growth. A first step in this direction is reported here. GPS-trajectories of 144,867 drivers over 104 million km in Beijing were used to quantify the potential acceptability, energy consumption, and costs of ride-hailing electric vehicle fleets. Average daily travel distance and travel time for ride-hailing drivers was determined to be 129.4 km and 5.7 h; these values are substantially larger than those for household drivers (40.0 km and 1.5 h). Assuming slow level-1 (1.8 KW) or moderate level-2 (7.2 KW) charging is available at all home parking locations, battery electric vehicles with 200 km all electric range (BEV200) could be used by up to 47% or 78% of ride-hailing drivers and electrify up to 20% or 55% of total distance driven by the ride-hailing fleet. With level-2 charging available at home, work, and public parking, the acceptance ceiling increases to up to 91% of drivers and 80% of distance. Our study suggests that long range BEVs and widespread level-2 charging infrastructure are needed for large-scale electrification of ride-hailing mobility in Beijing. The marginal benefits of increased all electric range, effects on charging infrastructure distribution, and payback times are also presented and discussed. Given the observed heterogeneity of ride-hailing vehicle travel, our study outlines the importance of individual-level analysis to understand the electrification potential and future benefits of electric vehicles in the era of shared smart transportation.
Keywords: Ride-hailing; Urban mobility; GPS trajectories; Electrification; Machine learning; Big data (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919308177
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:250:y:2019:i:c:p:147-160
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.04.157
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().