Specific heat capacity improvement of molten salt for solar energy applications using charged single-walled carbon nanotubes
Fan Yuan,
Ming-Jia Li,
Yu Qiu,
Zhao Ma and
Meng-Jie Li
Applied Energy, 2019, vol. 250, issue C, 1490 pages
Abstract:
This work focuses on the effects of charged single-walled carbon nanotubes (SWCNT) on the heat capacity of composite carbonate salt (Li2CO3-K2CO3) using the Electric Double-Layer modeling (EDL) and the Molecular Dynamics (MD) simulation. The nanoparticle-enhanced molten salt ensemble is modeled considering the compressed ion layer surrounding the SWCNT, and the specific heat capacity (cp) enhancement of the nanoparticle-enhanced molten salt is analyzed. The results present the following issues. First, compressed ion layer is formed around the SWCNT surface. The density distributions of Li+, K+ and CO32– are strongly related to the SWCNT charge. The density distributions of the ions present characteristics of oscillatory, and the densities of the ions can be increased by rise of SWCNT charge. Second, the charge density distribution is analyzed. The local enrichment of positive and negative charges is found to occur inside the compressed ion layer. It is found that increasing the SWCNT charge can promote the local enrichment of positive and negative charges, which contributes to the increase of the internal energy of the nanoparticle-enhanced molten salt ensemble and results in cp enhancement. Finally, cp is found to be increased with increasing SWCNT charge. The cp enhancement of 19.2% is achieved when the SWCNT carries surface charge of −280e. The obtained results can provide guidance on the application of charged nanoparticles to enhance the specific capacity of molten salt.
Keywords: Molten salt; Nanoparticle; Specific heat; Molecular Dynamics simulation; Charged surface (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191930827X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:250:y:2019:i:c:p:1481-1490
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.04.167
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().