Daily natural gas consumption forecasting via the application of a novel hybrid model
Nan Wei,
Changjun Li,
Xiaolong Peng,
Yang Li and
Fanhua Zeng
Applied Energy, 2019, vol. 250, issue C, 358-368
Abstract:
In daily natural gas consumption forecasting, the accuracy of forecasting models is vulnerably affected by the noise data in historical time series. Singular spectrum analysis (SSA) is often introduced into hybrid models for denoising. However, as a deterministic-based algorithm, SSA does not give good results when a time series is contaminated with a high noise level. Considering this fact, this paper proposes an improved SSA (ISSA) that modifies the determination method of subseries selection in the reconstruction stage of SSA. Combining ISSA with long short-term memory (LSTM), a novel hybrid model, ISSA-LSTM, is thus developed. Additionally, for validating the robustness and superiority of ISSA-LSTM, the historical datasets of four representative cities located in three climate zones are collected as the training and testing datasets, and a comparison of ISSA-LSTM with five advanced models is performed. The results reveal that SSA would generate negative values when time series close to zero and the contribution of SSA in improving the forecasting accuracy of LSTM is insignificant. In contrast, ISSA avoids generating negative values and reduces the mean absolute range normalized error (MARNE) of LSTM by a range of 0.86–11.86%. Among the models, ISSA-LSTM achieves the best performance and its MARNEs for London (temperate zone), Melbourne (subtropical zone), Karditsa (subtropical zone), and Hong Kong (tropical zone) are 4.68%, 5.72%, 5.76%, and 14.10%, respectively. The MARNE of the tropical city is higher than that of others, which is caused by the complex natural gas consumption pattern of itself.
Keywords: Singular spectrum analysis; Long short-term memory; Daily consumption forecasting; Natural gas; Deep learning; Artificial intelligence (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (38)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919308761
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:250:y:2019:i:c:p:358-368
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.05.023
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().