EconPapers    
Economics at your fingertips  
 

State of charge and online model parameters co-estimation for liquid metal batteries

Guoan Liu, Cheng Xu, Haomiao Li, Kai Jiang and Kangli Wang

Applied Energy, 2019, vol. 250, issue C, 677-684

Abstract: Liquid metal battery (LMB) is a novel battery technology that shows great application potential in the electric energy storage system. For the utilization of battery systems, an accurate estimate of the state of charge (SOC) for LMBs is of great significance. However, there are still many challenges need to be addressed due to the relatively low voltage and flat open-circuit-voltage versus SOC curve of LMBs. In this work, a novel state and parameter co-estimator is developed to concurrently estimate the state and model parameters of a Thevenin model for LMBs. The adaptive unscented Kalman filter is employed for state estimation including the battery SOC, and the forgetting factor recursive least squares is applied for online parameter estimation, which increase the model fidelity and further enhance the accuracy and robustness of the SOC estimation. A comparison with other algorithms is made based on the experimental data from laboratory-made LMBs. The evaluation results show that the proposed co-estimator exhibits the smallest root mean square error of 0.21% and is robust to external disturbances.

Keywords: Liquid metal battery; State of charge; Adapative unscented Kalman filter; Forgetting factor recursive least squares (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919308840
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:250:y:2019:i:c:p:677-684

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.05.032

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:250:y:2019:i:c:p:677-684