State of charge and online model parameters co-estimation for liquid metal batteries
Guoan Liu,
Cheng Xu,
Haomiao Li,
Kai Jiang and
Kangli Wang
Applied Energy, 2019, vol. 250, issue C, 677-684
Abstract:
Liquid metal battery (LMB) is a novel battery technology that shows great application potential in the electric energy storage system. For the utilization of battery systems, an accurate estimate of the state of charge (SOC) for LMBs is of great significance. However, there are still many challenges need to be addressed due to the relatively low voltage and flat open-circuit-voltage versus SOC curve of LMBs. In this work, a novel state and parameter co-estimator is developed to concurrently estimate the state and model parameters of a Thevenin model for LMBs. The adaptive unscented Kalman filter is employed for state estimation including the battery SOC, and the forgetting factor recursive least squares is applied for online parameter estimation, which increase the model fidelity and further enhance the accuracy and robustness of the SOC estimation. A comparison with other algorithms is made based on the experimental data from laboratory-made LMBs. The evaluation results show that the proposed co-estimator exhibits the smallest root mean square error of 0.21% and is robust to external disturbances.
Keywords: Liquid metal battery; State of charge; Adapative unscented Kalman filter; Forgetting factor recursive least squares (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919308840
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:250:y:2019:i:c:p:677-684
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.05.032
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().