EconPapers    
Economics at your fingertips  
 

Optimized production of biomethane as an energy vector from low-solids biomass using novel magnetic biofilm carriers

Patrice Ramm, Christiane Terboven, Elisabeth Neitmann, Ulrich Sohling, Jan Mumme and Christiane Herrmann

Applied Energy, 2019, vol. 251, issue C, -

Abstract: Completely stirred tank reactors are the common type of bioreactors used for biogas production, however, efficient conversion of low-solids feedstocks to biomethane is restricted by the wash-out of microorganisms at short hydraulic retention times. Novel magnetic foam glass particles that can serve as biofilm carriers and retain active microbial biomass were investigated in high-rate biomethane production. A mesophilic completely stirred tank reactor containing 2% (w/w) magnetic carriers was operated at organic loading rates of 1.5 to 7.7 gVS L−1 d−1 feeding sugar beet silage, the hydraulic retention time was systematically decreased from 24.5 to 4.7 d. Magnetic foam glass particles clearly stabilized the methane production process, especially by supporting methanogenic microorganisms that presented 49% of the population living on the magnetic carriers. Even at an hydraulic retention time of 4.7 d, which is very low for completely stirred tank reactors, methane production remained stable at a high level of 2.2 L L−1 d−1 (organic loading rate 6.3 gVS L−1 d−1, methane yield 0.353 L gVS−1). Results suggest that magnetic foam glass particles are an attractive option for increasing the process stability and performance of anaerobic completely stirred tank reactors fed with low-solids feedstock, enabling high-rate production of energy from slurries and wastewaters representing waste materials in agriculture and industry.

Keywords: Bioenergy; Anaerobic digestion; Biomass immobilization; Magnetic biofilm carrier; Methane; Completely stirred tank reactor (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919310633
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:251:y:2019:i:c:42

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113389

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:251:y:2019:i:c:42