EconPapers    
Economics at your fingertips  
 

Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation

Junqiu Li, Danni Sun, Xin Jin, Wentong Shi and Chao Sun

Applied Energy, 2019, vol. 254, issue C

Abstract: Overcharging is one of the main reasons causing lithium-ion battery thermal abuse, probably leading to vehicle accidents. This paper develops an impedance-based method to characterize the battery heat generation during overcharging process. An electro-thermal model is adopted for better computation efficiency. A series of overcharging experiments at 30 ℃ and 60 ℃ are conducted. Interestingly, three stages can be identified from the results, which are the normal heat-accumulating stage, fast heat-accumulating stage and thermal runaway stage, respectively (Stage I, II and III). During Stage I and II, pulse-relaxation and impedance-measurement methods are developed to parameterize the electro-thermal model, under different state of charge, temperature and charging rate conditions. Results of genetic algorithm with Hybrid Pulse Power Characteristic cycling data are used as benchmark. The simulated surface temperature results during overcharging are validated via experiments, which shows that medium frequency impedance method outputs better equivalent resistance and surface temperature estimation accuracy. The proposed model achieves to reduce the temperature estimation root mean squared error to under 0.9 ℃ in all overcharging situations, with greatly reduced computation complexity.

Keywords: Lithium-ion battery; Electro-thermal model; Overcharge; Experiment; Temperature (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919312486
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:254:y:2019:i:c:s0306261919312486

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113574

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919312486