Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants
Alban Kuriqi,
António N. Pinheiro,
Alvaro Sordo-Ward and
Luis Garrote
Applied Energy, 2019, vol. 256, issue C
Abstract:
This study investigates the influence of the river flow regime type on the e-flows releases and hydropower production, constrained by eight hydrologically-based e-flows methods. For this purpose, 20 run-of-river hydropower plants up to 10 MW, from five Iberian Peninsula basins, located in regions with pluvial highly fluctuating, pluvial stable, pluvial winter, and pluvio-nival flow regimes were analysed. We integrated a hydropower model with a hydrological model, and eight e-flows methods to estimate mean daily hydropower production, e-flows, and hydrologic alteration. The results demonstrate little influence on hydropower production and e-flows releases for the pluvial regime type, notably, pluvial stable regime river reaches. Pluvio-nival regime provides unstable hydropower production and comparatively high e-flows alteration. Overall, hydrologic parameters represented by five global indices derived from Indicators of Hydrologic Alteration were affected differently for the e-flows releases regime induced by tested e-flows methods. In general, e-flows methods that involve annual minimum flow and indices of flow duration curve show inconsistent results among all study cases and hydrological regimes types; either they result in high e-flows releases while sharply reducing hydropower production or vice versa. However, so-called dynamic approaches demonstrate consistent results and are more suitable, both in terms of hydropower production and e-flows releases by therefore providing 10–35% more energy production while having little impact in several hydrological parameters. The findings of this study may serve as a starting point to initiate a new discussion on the methods and criteria that should be established regarding e-flows determination at run-of-river hydropower plants.
Keywords: E-flows; Hydropower policy; Hydrological regime; Renewable energy; River management; Small hydropower plants (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (75)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919316678
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:256:y:2019:i:c:s0306261919316678
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113980
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().