CO2 separation using a hybrid choline-2-pyrrolidine-carboxylic acid/polyethylene glycol/water absorbent
Yifeng Chen,
Yunhao Sun,
Zhuhong Yang,
Xiaohua Lu and
Xiaoyan Ji
Applied Energy, 2020, vol. 257, issue C
Abstract:
Developing novel hybrid absorbents is essential for CO2 separation. In this study, the density and viscosity of a hybrid absorbent (choline-2-pyrrolidine-carboxylic acid/polyethylene glycol/water ([Cho][Pro]/PEG200/H2O)) were measured experimentally, and its CO2 solubility was also determined. The excess mole volume and excess Gibbs energy of activation of the hybrid absorbent were further estimated to understand the molecular structure and interactions between [Cho][Pro]/PEG200 and H2O. The CO2 solubilities in [Cho][Pro]/PEG200 and [Cho][Pro]/H2O were analyzed and described using the Redlich–Kwong non-random-two-liquid (RK-NRTL) model. Furthermore, the CO2 solubility in the hybrid absorbent was predicted using the RK-NRTL model and was compared with the new experimental results for verification. The effect of H2O on the CO2 absorption performance was further analyzed. The performance and cost of the hybrid absorbent were compared with those of other commercialized CO2 absorbents. In addition, the recyclability of the hybrid absorbent for CO2 separation was studied. The results of this study indicated that the hybrid absorbent could be promising for CO2 separation.
Keywords: Ionic liquid; Carbon dioxide; Property; Solubility; Modeling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919316496
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:257:y:2020:i:c:s0306261919316496
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113962
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().