Adaptive power allocation using artificial potential field with compensator for hybrid energy storage systems in electric vehicles
Yue Wu,
Zhiwu Huang,
Hongtao Liao,
Bin Chen,
Xiaoyong Zhang,
Yanhui Zhou,
Yongjie Liu,
Heng Li and
Jun Peng
Applied Energy, 2020, vol. 257, issue C
Abstract:
This paper proposes an adaptive power allocation strategy using artificial potential field with a compensator for hybrid energy storage systems in electric vehicles. In the power allocation level, a potential field is constructed to guarantee the state-of-charge limitations of supercapacitors. Virtual forces of this field are mapped as the allocation ratio of load power. The cutoff frequency is obtained by cutting the real-time load spectrum with the allocation ratio. In the control level, a feed-forward compensator is designed to compensate for load variations in advance which can counteract dc-link fluctuations. Experimental tests under different supercapacitor initial state-of-charges and different driving cycles evaluate the superiority of proposed methods. The artificial potential field strategy provides lower battery capacity loss with supercapacitors state-of-charge limitations guaranteed compared with existing real-time power allocation strategies, e.g., a more than 15% reduction of battery capacity loss in the urban driving cycle. The feed-forward compensator allows the hybrid energy output to meet the load requirements better.
Keywords: Hybrid energy storage system; Artificial potential field; Adaptive power allocation; Battery durability; Feed-forward compensation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919316708
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:257:y:2020:i:c:s0306261919316708
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113983
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().