An enhanced multi-state estimation hierarchy for advanced lithium-ion battery management
Xiaosong Hu,
Haifu Jiang,
Fei Feng and
Bo Liu
Applied Energy, 2020, vol. 257, issue C
Abstract:
As a critically important power source for modern electric vehicles, lithium-ion batteries need to operate safely, reliably, and efficiently, which entails effective battery management systems (BMSs). How to accurately estimate internal battery states constitutes a key functionality in a BMS and needs to be designed meticulously. In this paper, a novel co-estimation hierarchy for state of charge (SOC), state of health (SOH) and state of power (SOP) in lithium-ion batteries is devised and validated experimentally. Considering the underlying coupling and characteristics among these states, a multi-time-scale estimation framework is developed for accurate estimates and moderate computational cost. First, the online, model-based SOC estimation is fulfilled by modified moving horizon estimation (mMHE) for better convergence and fault tolerance. Second, the model parameters are periodically updated by virtue of the mMHE-type optimization with a relatively long horizon. Third, the ampere-hour integral and the estimated SOC are employed to realize the capacity estimation offline. Given updated states and parameters, the model-based real-time SOP estimation reliably predicts the battery peak power respecting multiple operational constraints. Finally, the effectiveness and resilience of the joint SOC/SOH/SOP estimation is demonstrated through a number of experiments. Experimental results show that the proposed co-estimation hierarchy presents remarkable benefits, compared to separate estimation solutions. The estimation errors of SOC, voltage and capacity are less than 3%, 25 mV and 3%, respectively, for both fresh and aged cells.
Keywords: Lithium-ion battery; State of charge; State of health; State of power; Moving horizon estimation; Estimation hierarchy (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919317064
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:257:y:2020:i:c:s0306261919317064
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114019
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().